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960. Out-of -plane Co-ordinates for the Vibrations of Planar 
Aromatic Molecules. 

By C. A. COULSON and A. GOLEBIEWSKI. 

A comparison is made between the conventional valence-field-co-ordinate 
treatment of the out-of-plane motion of a planar aromatic molecule, and the 
use of another set of co-ordinates recently introduced by Coulson and Senent. 
It is shown that in the latter scheme interaction constants in the potential 
energy function are very much smaller than in the former and may therefore 
often be completely neglected. Equations are given that enable the equations 
of motion of such a molecule to be written down in a very convenient form 
and permit simple calculation of the displacements in sterically overcrowded 
molecules of this type. 

WHEN studying the out-of-plane vibrations of a planar aromatic molecule it is usual1 to 
employ valence force co-ordinates (VFC). 
and Eliashevich for setting up the secular determinant for these vibrations. An advan- 
tage of this theory is that the force constants have an explicit and simple physical meaning, 
and can often be transferred from one molecule to another. ’ But recently, in the course of 
their study of certain overcrowded polynuclear hydrocarbons, Coulson and Senent * found 
it convenient to introduce another set of co-ordinates, which also have a simple physical 
meaning. 

In  order to compare the two sets of co-ordinates, let us consider (Fig. 1) part of a planar 
molecule to  which the co-ordinates are applicable. The numbers 1 . . . 6  denote the atoms, 
and +1 . . . ds denote the angles. Since the bond lengths will not usually all be equal, we 
denote by aik the bond length between atoms i and k. Then the two sets of co-ordinates 
used to describe the out-of-plane behaviour of this atomic configuration are: 

(1) the co-ordinates used, for example, by Miller and Crawford5 in their calculations 
of the benzene molecule, and typified by: 

General methods have been given by Wilson 

713 = angle between the 1,3-bond and the plane 2-14 
6,, = torsion angle between the planes 2-14 and 1-2-6. 

(2) the co-ordinates proposed by Coulson and Senent,* which, apart from certain scale 
factors, are equivalent to : 

d1 = distance of atom 1 from the plane of its three neighbours 3 4 2 .  
(3’12 = angle between the projections on to a plane perpendicular to 1-2 of two 

vectors, one of which is perpendicular to the plane 3-14 and the other to the plane 
2-5-6. 

We shall refer to these two sets of co-ordinates as MC and CS respectively. One 
advantage of the CS co-ordinates is that there is no ambiguity in their choice, such as is 
involved in 812 where instead of the planes 2-14 and 1-2-6 we might have chosen 3-1-2 
and 1-2-5. Another advantage seems to be that surprisingly good results can be obtained, 
both for spectral frequencies and structural e q ~ i l i b r i u r n ~ ~ ~ ~ ~  when only two force constants 
are used in the usual harmonic oscillator potential function, and with no cross-terms. 
Our objects in this paper are to understand the latter situation, and to provide a general 

See, e.g., Wilson, Decius, and Cross, ‘ I  Molecular Vibrations,” McGraw-Hill Book Co., New York, 
Toronto, London, 1955. 

Wilson, J .  Chem. Phys., 1939, 7, 1047; 1941, 9, 76. 
Eliashevich, Compt. rend. Acad. Sci. U.R.S.S., 1940, 28, 605. 
Coulson and Senent, J. ,  1955, 1813. 
Miller and Crawford, J .  Chem. Phys., 1946, 14, 282, 

6 Coulson and Senent, J., 1955, 1819. 
7 Ali and Coulson, J., 1959, 1558, 
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method for setting up the potential function in terms of the displacements xi of the atoms 
perpendicular to the mean plane. 

Relations between the Sets of Co-ordinates.-In comparing the MC and CS co-ordinates 
it is convenient to use a relative reciprocal bond length A i k  rather than aik, where 

A i k  = d/aik . . , . . . . . . (1) 

In (l), d is the most characteristic bond length (1.39-1.40 A for most aromatic compounds). 
Then straightforward trigonometric and analytical considerations lead to the following 
relations : 

Usually +1 = . . . = $,,-22~/3; and then these equations are equivalent, apart from a 
scale factor, to those given by Coulson and Senent and generalised by Ali and Coulson.7 

F I G .  2. 

,101 11.1' 

In what follows we shall discuss only this particular case, since, although generalisation 
to  other cases is possible, the formuh are rather complicated. It will now be convenient 
to take account of the scale €actor, and replace a', p' by a, p as defined by Coulson and 
Senent. So from here onwards 

We can also similarly find the relation between the MC co-ordinates and the Cartesian 
displacements xi. When $1 = . . . = 2 ~ / 3 ,  we have 

1 
3/13 = 2 {A41(24 - xl> + - + - * * * - (6) 

(7) 
2 

'12 = -dIA62('6 '2) - - xl> - A21(x2 - d> * - * 

The lack of symmetry in the definition of 6,, is well brought out by equation (7). 
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By comparing (4)-(7) we see that 

(8) 713 = 2 U l  . . . . . . . . . . . .  1 

Comparison for Benzene.--IVe are now in a position to compare the MC and CS potential 
functions; and we shall choose benzene as our example, since the force constants in the 
MC scheme are already known with good precision. If we limit ourselves to interaction 
terms of ortho-type only, we have in the MC representation: 

where the symbols o and m in the superscripts attached to the interaction constant K 
denote ortlzo- and nzeta-positions. 

A comparison of equations (10) and (ll), using (8) and (9), shows that if we use A for 
the ratio 1 = R/r  = 1.2963, then 

with the condition for zero meta-interactions 

If we use the force constants A ,  . . .  calculated in the MC scheme by Kakiuti and Shiman- 
ouchi to compute the force constants K", . . .  we obtain the results shown in Table 1, in 
which the third and the sixth column give the value of the force constant as a percentage 
of the largest one ( A  and Ka respectively). 

8 I<akiuti and Shimanouchi, J .  Clzem. Phys., 1956, 25, 1252. 
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TABLE 1. Numerical values of the force constants. 
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Force constants calculated by Kakiuti and 
Shimanouchi * 

Symbol Value (lo5 dynelcm.) % 
A 0.402 100 
B 0.181 45.0 
a - 0.073 18.2 
b - 0.012 3.0 
c -0.131 32.6 

* Taking r,, = 

Force constants in the considered VFC repre- 
sentation calc. from eqn. (12) 

Ka 0.1345 100 
KB 0.0603 44.8 
KaBo 0.0059 4.4 
Ka0 0-0050 3.7 
KBO - 0.0040 3.0 

Symbol Value ( lo5 dyne/cin.) % 

1.08 A, 22, = 1.40 A 

It is surprising how much the interaction constants given in the last three lines of this 
Table are reduced in the new CS co-ordinates. Thus the maximum value of an interaction 
constant is reduced from 32.6% in the MC scheme to 4.4% in the CS scheme. This 
explains why Coulson and Senent 4 9 G  and Ali and Coulson 7 obtained such good results 
even though they neglected all interaction constants. Incidentally the values which we 
obtain in Table 1 for Ka and KB differ only slightly from those previously used by Coulson 
and Senent: namely: 

Ka = 0.1474 x lo5 dyne cm.-l; Kfl = 0.0553 x lo5 dyne crn.-I . . (15) 

Since the calculation of interaction constants is the most troublesome part of the estimation 
of potential functions, and since according to equation (13) the influence of each separate 
K-force constant is additive in the determination of the A,B, . . . force constants, we show 
in Table 2 the way in which the K-interaction constants influence the MC constants 
A . . . c. In each column there are given the values of these constants when account is 
taken only of the CS constants listed at the head of the column. It can be seen from this 
Table that, a t  least in benzene, KaBo is the most important interaction force constant, 
and Kbo the least important in influencing A,B, . . . c. 

TABLE 2. 

Ka,KB from Exact 
eqn. ( 15) Ka, KB Ka, KB, KaO Ka, KB, KaBO K a ,  KB, KBO K a ,  KB, KaO, KaBo, KaO value 

A 0.433 0.429 0.429 0.389 0.442 0.402 0.402 
B 0.166 0.181 0.181 0.181 0.181 0.181 0.181 
a -0.093 -0.101 -0.093 -0.081 - 0.1 14 - 0.086 - 0.073 
b 0 0 0 0 -0.012 -0.012 -0.012 
c -0.068 -0.135 -0.135 -0.122 -0.144 -0.131 -0.131 

(and small values for the meta-interaction terms in the MC representation.) 

The importance of the interaction terms of K type in determining the MC 
force constants. 

APPENDIX 
In  all applications of the CS co-ordinates to the out-of-plane deformations of overcrowded 

molecules, or to the calculation of out-of-plane normal modes of vibration, it is necessary to 
form the expressions 

. . . . . . . (16) 

for all i's. 
very tedious when dealing with large molecules. 
general formula for Uik. 
this Table is valid. 

The coefficients Uik are simple to obtain from an 
We have 

For the sake of definiteness we first 

expression such as ( l l ) ,  but it is 
therefore set down in Table 3 a 
list the assumptions under which 

(i) All the bond angles are 120°, and all the carbon-carbon bond lengths have Aik = 1. 
(ii) Each carbon atom is in the sp2-state of hybridisation, and no such carbon atom has 

more than one non-carbon neighbour (this is usually hydrogen). 
(iii) The potential energy is a quadratic form of the co-ordinates (4)--(5), and all interaction 

force constants are neglected, We have seen that these interaction constants are small; they 
may, of course, be added if we so desire; but then the formulae of Table 3 become considerably 
more complicated. 
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The following definitions will be used : 

s = general carbon or hydrogen atom, with respect to which the potential energy is 
being differentiated to give a V/az,, 

o = a nearest neighbour atom to s (ortho), 
m = a second nearest neighbour atom to s (meta), 
p = a third nearest neighbour atom to s (e.g., pum) ,  
x = hydrogen neighbour atom of s (if any), 
y = hydrogen neighbour atom of m (if any), 
z = hydrogen neighbour atom of p (if any), 

nzt::: = the number of torsion axes passing through a,b . . . and not through c,d, . . ., 
N$ = +nky when 1 and m refer to atoms on the same side of the axis ks, 

xsp = number of shortest paths, from atom s to atom p along the bonds (this must be 
- - -nk when 1 and m refer to atoms on different sides of the axis ks, 

either 1 $r 2), 
A = 1.40/1*08 (A) = 1.2963, 

A = KB/Ka = 0.4483 

TABLE 3. Formula for the coe$icients ztiS = uSi. 

(a secondary carbon atom) 
s (CJ 4Ct) s(H) 

(1 + 2A)A2 - - 
- (2 + + 2 + (2A2 - 4X + 2 + XPZE)A - 

(a tertiary carbon atom) (a hydrogen atom) 

0 

- - 12 + A&: 
0 

-(2 + X)X + 2 h ( l  - X)X -(4 + 2X) + A(A - 1)[2 - (A - 1 ) N 3  - (5 + A) + (A - 1 ) h  
- -(5 + A) + (A  - 1)A -6  

X ( l  + h[(X - l)Nym - 1 3  
(1 - A)A 

1 + {(A - l)(NE + e) - nF}A 
1 + {(A - l)e: - n y } A  

1 + {(A - l ) c m  - n7m)A 
1 - nrA  

} -A;VSgA -.AfepAiV% -NBpAN:L 
P (GI 
P(H) - A e m h 2  - AW?.,A - nqmx 

(Note : The first main column gives z<iq when s is a hydrogen atom, the second when s is a secondary 
Also, 0, m in em refer to  those atoms 

refers 
carbon atom, and the third when s is a tertiary carbon atom. 
in ortho- and meta-position, which are between the atoms s and p. 
to that  atom in the ovtho-position to s, which lies between the atoms s and m). 

Similarly o in 1Vrm and 

Let us illustrate the use of this Table by taking as an example the calculation of aV/8zl in 
= 2, 1,12-benzoperylene (Fig. 2). 

index s = 1 referring to a secondary carbon atom. 
The molecular diagram shows that n:. = 0, nt = 1, 

Hence 

u ~ , ~  = (2 + A)2 + 2 + (2A2 - 41 + 5 ) h  
Similarly : 

u1,13 = - ( 5  f I) + (A - l)h 
ul,lq = 1 - AA, since NEx = N:;;:’ = -1  and nim = n1*14 13 = 1, 
u ~ , ~ ~  = --A, since N:L = N::: = Ni;r!4 = 1, and so on. 
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